Advanced Data Science Techniques with Python : Outputs

 1. Feature Engineering for Enhanced Predictive Power

Output:

The code uses Featuretools to generate features from the customer data provided in a CSV file. It creates an entity set, defines an entity from the DataFrame, and then generates features using deep feature synthesis. Finally, it prints the engineered features.

The output will be the first few rows of the engineered features DataFrame. It will display the engineered features for each customer.

The output will look something like this:

zip_code COUNT(transactions) ... SUM(transactions.amount) MEAN(transactions.amount) customer_id ... 1 60601 3 ... 267.09 89.030000 2 90033 3 ... 221.89 73.963333 3 10011 4 ... 278.74 69.685000 4 60614 5 ... 303.64 60.728000 5 60657 3 ... 210.47 70.156667 [5 rows x 4 columns]

2. Time Series Analysis and Forecasting:

Output:

This Code performs seasonal decomposition on sales data, fits a Prophet model, generates future dates for forecasting, and prints the forecasted values. Let's break down the expected output for each part:

  1. Seasonal Decomposition Output:

    • result.trend: Trend component of the decomposition.
    • result.seasonal: Seasonal component of the decomposition.
    • result.resid: Residual component of the decomposition.
  2. Prophet Forecast Output:

    • The last few rows of the predictions DataFrame, which include the forecasted values for the future dates.

The output will look something like this:

0 NaN 1 NaN 2 NaN 3 NaN 4 NaN ... 95 297.314498 96 312.454498 97 295.896183 98 276.269183 99 283.073106 Name: trend, Length: 100, dtype: float64 0 58.527108 1 26.004999 2 19.608065 3 -4.752871 4 -33.388302 ... 95 58.527108 96 26.004999 97 19.608065 98 -4.752871 99 -33.388302 Name: seasonal, Length: 100, dtype: float64 0 NaN 1 NaN 2 NaN 3 NaN 4 NaN .. 95 NaN 96 NaN 97 NaN 98 NaN 99 NaN Name: resid, Length: 100, dtype: float64 ds trend yhat_lower yhat_upper trend_lower trend_upper \ 100 2024-05-10 276.269183 230.134852 323.975364 276.269183 276.269183 101 2024-05-11 283.073106 234.243850 329.014174 283.073106 283.073106 102 2024-05-12 283.875939 232.642435 329.003036 283.875939 283.875939 103 2024-05-13 285.505319 238.730895 333.845565 285.505319 285.505319 104 2024-05-14 287.134698 238.646308 336.046658 287.134698 287.134698 additive_terms additive_terms_lower additive_terms_upper weekly \ 100 -12.166685 -12.166685 -12.166685 -12.166685 101 -8.298307 -8.298307 -8.298307 -8.298307 102 -9.956161 -9.956161 -9.956161 -9.956161 103 -7.917464 -7.917464 -7.917464 -7.917464 104 -6.256769 -6.256769 -6.256769 -6.256769 weekly_lower weekly_upper multiplicative_terms \ 100 -12.166685 -12.166685 0.0 101 -8.298307 -8.298307 0.0 102 -9.956161 -9.956161 0.0 103 -7.917464 -7.917464 0.0 104 -6.256769 -6.256769 0.0 multiplicative_terms_lower multiplicative_terms_upper yhat 100 0.0 0.0 264.102498 101 0.0 0.0 274.774799 102 0.0 0.0 273.919778 103 0.0 0.0 277.587855 104 0.0 0.0 280.877929


  • trend, seasonal, and resid represent the trend, seasonal, and residual components respectively.
  • The last few rows of the predictions DataFrame show the forecasted values for the future dates along with other related information.

3. Natural Language Processing for Text Analytics:

Output:

This code first performs sentiment analysis on customer reviews using NLTK's SentimentIntensityAnalyzer, then it preprocesses the text data using TF-IDF vectorization. Here's what the output will look like:

1. Sentiment Scores:

The sentiment scores for each review, calculated using the compound score from the SentimentIntensityAnalyzer.

2. TF-IDF Matrix:

The TF-IDF matrix representing the preprocessed text data.

0 0.6588 1 -0.5423 2 0.3400 3 -0.2732 4 0.8225 Name: sentiment_scores, dtype: float64 [[0. 0.40993715 0. ... 0. 0. 0. ] [0. 0. 0.51785612 ... 0. 0. 0. ] [0. 0. 0. ... 0. 0. 0. ] [0. 0. 0. ... 0. 0. 0. ] [0. 0. 0. ... 0. 0. 0. ]]

  • The first print statement shows the sentiment scores for each review.
  • The second print statement shows the TF-IDF matrix. Each row represents a review, and each column represents a word in the vocabulary. Values in the matrix represent the TF-IDF scores for each word in the corresponding review.


Comments

Post a Comment

Popular posts from this blog

How to use the statsmodels library in Python to calculate Exponential Smoothing

K-means Clustering 3D Plot Swiss roll Dataset

How to detect Credit Card Fraud Using Python Pandas